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SUMMARY

The influence of free convection and variable viscosity on forced laminar flow of a Newtonian fluid in
a horizontal annular duct is investigated. The inner and outer cylinders are subjected to a constant heat
flux density. At the entrance of the annular duct, the flow is fully developed and the temperature profile
is uniform. The Prandtl and Boussinesq hypothesis were adopted. The continuity equation and the
three-dimensional parabolized form of the momentum and energy equations are solved numerically using
finite differences. Near the entrance section, forced convection is the dominant mechanism. Further
downstream, the fluid heats up and buoyancy becomes more important. The fluid near the walls is
warmer, and therefore lighter than the fluid in the central part of the annular space; it therefore flows
upward along the walls. A continuity requires a downflow of the heavier fluid between the two cylinders.
This secondary flow modifies the structure of the dynamic and thermal fields. The numerical results show
that a decrease in fluid viscosity with temperature leads to: (i) an increase in axial velocity in the upper
part of the annular duct and a decrease in the lower part; (ii) a rise in the secondary flow intensity; (iii)
a reduction in temperature difference between the upper and lower parts of a cylinder; (iv) an increase
of the overall heat transfer coefficient. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Laminar mixed convection in a horizontal circular duct has been studied by several workers
since the paper published in 1959 by Morton [1], where an analytical solution based on a
perturbation method was proposed. The case of an annular geometry has been however, much
less studied, even though this geometry is the most often encountered in fluid thermal
processes. Most articles dealing with mixed convection in horizontal annular ducts only
consider the case where the dynamic and the thermal patterns are fully developed with
different types of boundary conditions. Mojtabi and Caltagirone [2] considered the case of
inner and outer cylinders at constant temperatures, Nieckele and Patankar [3], Kotake and
Hattori [4], as well as Ciampi et al. [5] examined the case where the inner cylinder is heated at
constant flux and the outer cylinder is adiabatic. Recently, Thermina et al. [6] studied the
simultaneously developing mixed convection flow and heat transfer for fluids with Prandtl
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number close to unity. The elliptic formulation is retained: the axial viscous and thermal
diffusions are not neglected. The inner cylinder is heated at constant temperature and the outer
one is maintained at the entrance temperature. These authors mentioned the possibility of axial
reverse flow when natural convection is sufficiently intense. The literature shows also that few
works take the variation of viscosity with temperature into consideration, whereas the majority
of fluids used in industrial processes have such property. Hong and Bergles [7] investigated
theoretically the heat transfer for fluids with high Prandtl number flowing in a circular duct
heated with a constant heat flux. The dynamic and thermal fields are considered fully
developed. It is assumed that the flow in a straight section of the duct consists of two regions:
a region close to the wall that corresponds to a developing boundary layer originating from the
lower part of the duct and growing along the circumference, and a central region where the
axial flow is undisturbed. The authors showed that the reduction of the viscosity with
temperature reduces the thickness of the circumferential boundary layer and creates a stronger
secondary flow. Chou and Tung [8] performed a numerical study of the heat transfer for
mineral oil in a rectangular duct. The different mechanisms governing the heat transfer in the
entrance region are clearly explained. However, the effect of viscosity thermodependency on
the mixed convection is not set obviously. In other investigations (Bishop and Deshpande [9],
Shome and Jensen [10]), the effect of variable viscosity on free convection is just incorporated
into the viscosity ratio correction term for Nusselt or friction factor correlation.

To the knowledge of the auhtor, there is no study that clearly brings out the effect of the
thermodependence of the viscosity on the dynamic and thermal fields structure for a mixed
convection in a horizontal axisymmetric geometry. In the present investigation, a laminar
mixed convection in a horizontal annular duct is studied. The inner and outer cylinders’ walls
are heated at a constant heat flux density f.

As the fluid enters the annular duct, a thermal boundary layer develops on the walls of the
cylinders, with a secondary flow developing inside the thermal boundary layer due to the
temperature difference between the walls and the inlet fluid. Since the viscosity of the fluid
decreases with temperature, the fluid is then accelerated near the heated wall and decelerated
in the central part of the annular duct for flow conservation. This motion generates node-like
sinks along the walls of the annular duct and causes fluid particles to move towards the wall.
Simultaneously, the displacement of the secondary boundary layer induces a downward stream
between the two cylinders. As explained by Yao [11], the axial velocity profile turns to
accommodate the downward stream generated by the displacement of the secondary boundary
layer. The component of the axial pressure gradient induced by the secondary flow is negative
along the bottom of the duct and is positive along the top. The upward flow of the warmer
fluid near the heated walls, and the downward flow of the cooler fluid between the cylinders
leads to a stratification of a fluid in a section of the annular duct. The heat transfer is then
enhanced in the bottom and downgraded on the top. The decrease of the viscosity with
temperature on one hand leads to the reduction of the drag forces of viscous origin, therefore,
to the intensification of the secondary flow, and on the other hand, increases the wall axial
velocity gradient, which diminishes the wall temperature and consequently the buoyancy force.
It will be shown that: (i) contrary to the case of constant viscosity, the fluid will be accelerated
in the upper part and decelerated in the lower part when it is sufficiently thermodependent.
The axial flow in the central region is strongly disturbed even for a large Prandtl number,
contrary to the assumptions of Hong and Bergles [7]; (ii) the temperature difference between
the top and the bottom of a cylinder is reduced; and (iii) the secondary flow intensity increases.

The plan of this paper is as follows. The formulation of the problem through the governing
equations is given in Section 2. The procedure for obtaining a numerical solution is described
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in Section 3. The numerical results are analyzed in Section 4. Finally, some conclusions are
drawn about the effect of thermodependency of viscosity on the dynamic field structure for a
mixed convection in a horizontal axisymmetric geometry.

2. PROBLEM FORMULATION

A laminar flow of a Newtonian fluid in a horizontal annular duct is considered. The inner and
outer cylinders, of radius R1 and R2 respectively, are subjected to a constant heat flux density
f (Figure 1). The ratio R1/R2 will be designated as R. The variations of the fluid density and
viscosity with temperature are assumed to be given by:

r=re[1−b(T−Te)], m=a exp(−bT), (1)

where, re is the fluid density at the entrance temperature Te and b is the thermal expansion
coefficient. The specific heat Cp and the thermal conductivity l are assumed constant. The
formulation presented below is written for an incompressible fluid under the following
assumptions: (i) the flow is steady; (ii) the Peclet number is sufficiently large (Pe\100) so as
the diffusion in the axial direction (main flow) can be neglected in the momentum and energy
equations; (iii) the variation of the density with temperature is taken into consideration only
in the buoyancy term (Boussinesq approximation); (iv) the viscous dissipation is negligible. The
dimensionless equations governing the conservation of mass, momentum and energy are:
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Figure 1. Flow geometry and co-ordinate system.
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[Vb · 9a ]U=
1

Pe
DU. (6)

To ensure that the volume of fluid flowing across each cross-stream plane is conserved, the
governing equations, (2)–(6), are to be solved along with the integral continuity equation given
by: & p
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where u, 6 and w are the axial, radial and azimuthal components respectively of Vb .
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At the entrance section, the flow is fully developed and the temperature profile uniform.
Furthermore, the flow is assumed to be symmetrical with respect to the vertical plane
containing the duct axis. The boundary conditions are given by:

r=R : u=6=w=0,
(U
(r

= −1/(1−R); (8)

r=1: u=6=w=0,
(U
(r

= −1/(1−R); (9)

z=0: u=ufd, 6=w=U=0; (10)

u=0, p ;
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=w=0. (11)

In Equations (2)–(11), the variables have been rendered dimensionless using a length R2, a
velocity Ud (mean axial velocity), a reference viscosity me and a pressure reUd

2. The dimension-
less temperature is defined as: U= (T−Te)/DT with DT=fDh/2l, Dh is the hydraulic
diameter. The Peclet number Pe, Grashof number Gr, and the Reynolds number Re are
defined as:

Pe=rCpUdR2/l ; Re=rUdR2/me; Gr=r e
2gbDTR2

3/m e
2.

The pressure distribution in general, can be obtained by deriving a Poisson pressure
equation from the momentum equations. The application of this procedure without modifica-
tion in this instance will produce a fully elliptic pressure equation, therefore resulting in an
inconsistency with earlier treatment of the momentum equations. The fully parabolized
governing equations may be obtained (Patankar and Spalding [12]) by setting: P=Pm(z)+
P %(r, u, z) under the assumption of dPm/dz�(P %/(r, (1/r)(P %/(u, (P %/(z. The resulting
changes in conservation momentum equations are:

(P/(z�dPm/dz, (P/(r�(P %/(r, (P/(u�(P %/(u.

The pressure Pm can be appropriately viewed as a space-averaged pressure over a cross-section.
The principal drawback of this model is that it does not allow for flow recirculation in the
axial direction.

Using the dimensionless temperature U, m̄ can be written as: m̄=exp(−PnU), where Pn is
the Pearson number: Pn=bfDh/2l. Then, the problem of mixed convection depends on five
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dimensionless numbers: R, Re, Pr, Gr and Pn. To formulate the local heat transfer between the
cylinder wall and the fluid, internal and external Nusselt numbers Nu1 and Nu2 respectively,
are introduced:

– Local Nusselt number (depends on z and u):

Nu1,2=2/[U1,2−Um ].

– Averaged circumferentially Nusselt number (depends on z)

Numoy=2/[U1,2moy−Um ], where U1,2moy= (1/p)
& p

0

U1,2 du.

Um is the dimensionless bulk temperature and U1,2moy is the circumferentially averaged wall
temperature (inner or outer cylinder). The trapezoidal’s rule is used to compute the average
U1,2moy.

3. NUMERICAL SOLUTION

Equations (3)–(6) constitute a parabolic system and can be solved by a stepwise integration in
the axial direction from specified set of upstream initial conditions. The conservation equations
with the associated boundary conditions are discretized using finite differences. The partial
derivatives in the radial and azimuthal directions are approximated by a centered scheme, the
first-order derivatives in the axial direction are approximated by an upwind scheme. The finite
difference equations are linearized by assuming that when the product of two unknowns
occurs, one of them is given approximately by its value at the previous axial step. The
procedure for the solution to the momentum and energy equations is based on the one
proposed by Briley [13]. It starts by solving the finite difference form of the z momentum
equation for the u field assuming dPm/dz. Based on this u field, the overall continuity
requirement of specified mass flow rate is checked. The residual mass defined in Equation (12)
coupled with a secant method is used iteratively in correcting the u field and Pm. The secant
method converges in the limit of machine accuracy in three iterations.& p

0

& 1

R

ru dr du=
p

2
[1−R2]=Res. (12)

When the residual flow rate Res, calculated using the Simpson rule, is less than or equal to
10−7, the constraint (12) is assumed verified. The next step is the computation of the
cross-stream velocities 6 and w from the momentum equations in the r- and u-directions using
a pressure field P %(r, u, z) of the upstream section. The results 6p and wp (provisional velocity)
are then considered to check the local continuity requirement. To this end, the following
decomposition of 6 and w is performed:

6=6p+6* ; w=wp+w*, (13)

where 6* and w* are corrections to 6p and wp which ensure that 6 and w satisfy the continuity
equation. It is assumed that the correction velocities are irrotational. Therefore, there exists a
potential 8 such that:

6*=
(8

(r
; w*=

1
r
(8

(u
. (14)
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If Equations (13) and (14) are substituted in Equation (2), a Poisson equation is generated:

D8= f, (15)

with homogeneous Neumann boundary conditions ((8/(n=0) on the boundary of the domain
[R, 1]× [0, p ]. The pressure field P %(r, u, z) is obtained by constructing a Poisson equation
from Equations (4) and (5):

DP %=F. (16)

The boundary conditions are all of Neumann type. They are derived from r and u momentum
equations. The pressure equation with the boundary conditions is solved on a computational
domain formed by grid points one mesh length away from the walls. After the flow variables
are computed, the energy equation is solved for the temperature field. As the viscosity varies
with temperature, the foregoing procedure is repeated until successive temperature fields do
not show significant changes.

Having examined the global procedure for the resolution of the problem, in the following
some details are given about the discretization of the governing equations. The momentum and
energy equations are discretized using the ADI technique. The tridiagonal system of linearized
equations arising from each half step are solved using the Thomas algorithm. The Poisson
equations for the potential 8 and for the pressure with the corresponding boundary condi-
tions are solved by line under successive relaxation with alternating sweeping direction. The
criterion of convergence is max�8n+1−8n�/max�8n+1�510−5, n is the iteration number, and
max�P %n+1−P %n�/max�P %n+1�510−3. However, in order to satisfy the divergence theorem,
the source terms f and F are replaced respectively, at every grid point by:

fc= f+
1
S
�&

S

f ds−
7

C

((f/(n) dc
n

and Fc=F+
1
S
�&

S

F ds−
7

C

((P %/(n) dc
n

,

where, C is the closed boundary of the solution domain of area S and n is the outward normal
to C. In the current calculations, the Poisson equations (15) and (16) are written using
conservative spatial derivatives. Finally, the overall algorithm is of the order (Dz2, Dr2, Du2).

Calculations were made for a radii ratio, R=0.5. The computations in the present work
were performed on a RISC workstation. The CPU time is about 6 h. The results presented in
this paper were generated from a regular grid 101×101 in (r, u)-directions. The axial step was
constant and equal to 2.5×10−4/R2. In general, the computations were terminated at z=150,
where for the working conditions considered here, the dynamic regime is nearly established.

As there is no experimental data or analytical solution corresponding to the mixed
convection flow under consideration, the program is validated by comparison with analytical
solution for pure forced convection (Gr=0), constant viscosity (b=0), one cylinder heated
and the other one adiabatic. In the thermally developing region, the evolution of the
circumferentially averaged Nusselt number at the outer cylinder for increasing grid size from
21×21 to 101×101 is plotted in Figure 2. It is compared with the analytical solution of
Worsoe-Schmidt [14].

Nu=1.034(1−R)1/3(du/dr)r=1
1/3 (X+)−1/3,

where, X+ is the Cameron number: X+ =z/Pe. As can be expected, the successive refinement
of the grid takes us asymptotically towards the correct solution. Near the entry section, the
thermal boundary layer is very thin. This is why the large grid is not adequate to describe the
thermal field near the entry section.
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Figure 2. Effect of grid size on the circumferentially averaged Nusselt number: Re=32; Pr=348.3; Gr=0; Pn=0;
f1=0, f2=6000 W m−2; (1) 21×21, (2) 41×41, (3) 61×61, (4) 81×81, (5) 101×101, (6) analytical solution of

Worsoe-Schmidt.

4. ANALYSIS OF RESULTS AND DISCUSSION

The results are basically divided into three parts. In part one, the case of forced convection
with variable viscosity is considered. Part two concerns mixed convection with constant
viscosity. The case of mixed convection with variable viscosity is presented in part three.

In the case of forced convection coupled with reducing viscosity due to the temperature,
there is a reorganization of the flow characterized by an increase in wall velocity gradient on
the inner and outer cylinders. This increase is higher at the outer one, where the wall
temperature is more important than that on the inner one. The axial velocity in the central
zone of the annular gap decreases to maintain the flow conservation. This result is illustrated
in Figure 3, where axial velocity profiles are presented at four axial positions. One notes that
the rate of deformation of the axial velocity profile is larger in the region near the thermal
entrance, such as z from 0 to 12.5, than that near the fully developed region, such as from 37.5
to 125. This flow reorganization is accompanied by the appearance of a radial component of
the velocity, directed globally from the central part of the annular gap towards the heated
walls. Its intensity decreases along the heating zone since the rate of axial velocity deformation
decreases. The flow is axisymmetrical. The isotherms and the axial velocity contours are
concentric. As far as the heat transfer is concerned, Figure 4 shows the evolution of the
external Nusselt number along the heating zone for Pn=0 and 10. As expected, the heat
transfer is enhanced by the decrease of m with T. A similar evolution is obtained for the
internal Nusselt number.

The case of mixed convection when the viscosity remains constant is considered next. As a
result of the decrease of the density with temperature, the warmer fluid moves upward (6\0)
along the heated walls of the cylinders and the cooler fluid moves downward (6B0) in the core
region between the cylinders, as shown in Figure 5. Hence, the flow in a section of the annular
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Figure 3. Axial velocity profiles along the heating zone: Re=32; Pr=348.3; Gr=0; Pn=10; (1) z=0, (2) z=12.5,
(3) z=37.5, (4) z=125.

gap can be characterized by two counter rotating cells. The analysis of tangential velocity
profiles at a given axial position and for different angular positions shows that the fluid is first
accelerated between the lower part and the median plane; it is then decelerated between the
median plane and the upper part of the duct. Figure 6 shows the evolution of the tangential
velocity profile at u=p/2 and for different axial positions. It illustrates the development of the

Figure 4. Evolution of the external Nusselt along the heating zone: Gr=0; (1) Pn=0, (2) Pn=10.
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Figure 5. Secondary flow structure: Re=35; Pr=557.3; Pn=0; f1=f2=6000 W m−2; Gr=6000; z=75.

secondary flow along the heating zone. The tangential velocity profile at z=125 is not
represented, it is practically identical to that at z=75. The azimuthal flow starts at a short
distance from the entrance, then increases and tends toward an asymptotic profile. As
suggested by Hong and Bergles [7], the radial position of the maximum of the tangential
velocity corresponds to the thickness du of the circumferentially boundary layer. This defini-

Figure 6. Evolution of the tangential velocity profiles along the heating zone: Re=35; Pr=557.3; Gr=6000; (1)
z=6.25, (2) z=12.5, (3) z=25, (4) z=75.
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Figure 7. Isotherms (left-hand-side) and axial velocity contours (right-hand-side): Re=35; Gr=6000; Pr=557.3;
Pn=0. (a) z=6.25; isotherms (iso U*): U*= (U−Ue)/(Umax−Ue): Umax−Ue=0.1: (1) 0.7, (2) 0.3, (3) 0.1; iso-axial
velocity (iso u/Umax): Umax=1.5: (1) 0.9, (2) 0.8, (3) 0.6, (4) 0.4, (5) 0.2. (b) z=50; isotherms: Umax−Ue=0.28: (1)
0.1, (2) 0.3, (3) 0.5, (4) 0.8; iso-axial velocity: Umax=1.5: (1) 0.9, (2) 0.8, (3) 0.6, (4) 0.4, (5) 0.2. (c) z=125; isotherms:
Umax−Ue=0.41: (1) 0.1, (2) 0.2, (3) 0.3, (4) 0.5, (5) 0.8; iso-axial velocity: Umax=1.5: (1) 0.9, (2) 0.8, (3) 0.6, (4) 0.4,

(5) 0.2.
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Figure 8. Axial velocity profiles along a central vertical line: case of constant viscosity. Gr=9.6×104; Re=80;
Pr=139.3; z=75; (1) u=0, (2) u=p ; (----) z=0.

tion was used since the secondary flow velocity in the core is not zero. The results show that
du is more important on the outer cylinder. It increases from z=0 and tends asymptotically
towards a constant value.

To show the axial development of the velocity and temperature fields, isotherms and
isovalues of axial velocity were examined at different axial positions. Figure 7 shows isotherms
and flow patterns for three axial locations: z=6.25, 50 and 125, for Gr=6000, Pr=557.3,
Re=35 and Pn=0. One can see that the isovalues of the axial velocity remain concentric
circles along the heating zone. The axial flow is symmetric with respect to the horizontal axis.
Indeed, Nieckele et al. [3] have shown by an appropriate scaling of the conservation equations
that for large Prandtl number, the axial flow is not disturbed by natural convection. However,
for fluid with lower Prandtl number, there is a reorganization of the flow, characterized by an
increase of the axial velocity at the lower part of the annular duct and a decrease at the upper
part (Figure 8). According to Yao [11], the axial velocity profile turns to accommodate the
downward stream generated by the displacement of the secondary boundary layer. Next, the
evolution of isotherms is examined (Figure 7). Near the entrance section, the isotherms are
practically concentric circles (Figure 7(a)). The free convection is weak and the forced
convection is the dominant mechanism. As the fluid moves from the entrance, the isotherms
are gradually distorted (Figure 7(b) and (c)). They are closely spaced and nearly circular in the
lower part of the cross-section, and sparsely spaced in the upper part. This indicates a
deterioration of the heat transfer in the upper part of the annular duct and an improvement
in the lower part. The evolution of the top and bottom wall temperatures of the outer cylinder
is represented in Figure 9. It corresponds to the first region, described by Abid et al. [15],
where the secondary flow develops. From z:125, the thermal establishment starts with the
developed dynamic regime. In this second region, the wall temperature increases linearly with
z.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 849–864 (1999)
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Figure 9. Evolution of the outer cylinder wall temperature along the heating zone. Re=35; Gr=6000; Pr=557.3;
Pn=0; (1) u=0, (2) u=p.

Having examined independently the effect of the variation of the viscosity with temperature
and that of buoyancy on the structure of the flow, the problem of mixed convection with a
thermodependence of the viscosity is now analyzed. As indicated previously, the decrease of m

with T, on one hand, reduces the drag forces of viscous origin, thereby increasing the intensity
of the secondary flow, and on other hand increases the wall axial velocity gradient, which in

Figure 10. Effect of the Pearson number on the secondary flow: u=p/2; z=75; Re=35; Gr=6000; Pr=557.3; (1)
Pn=0, (2) Pn=4, (3) Pn=10.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 849–864 (1999)
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Figure 11. Isotherms (left-hand-side) and axial velocity contours (right-hand-side): Re=35; Gr=6000; Pr=557.3;
Pn=10. (a) z=6.25; isotherms: Umax−Ue=0.085: (1) 0.1, (2) 0.3, (3) 0.7; iso-axial velocity (iso u/Umax): Umax=1.41:
(1) 0.9, (2) 0.8, (3) 0.6, (4) 0.4, (5) 0.2. (b) z=50; isotherms: Umax−Ue=0.22: (1) 0.1, (2) 0.3, (3) 0.7; iso-axial
velocity: Umax=1.79: (1) 0.9, (2) 0.8, (3) 0.6, (4) 0.4, (5) 0.2. (c) z=125; isotherms: Umax−Ue=0.28: (1) 0.1, (2) 0.2,

(3) 0.3, (4) 0.5, (5) 0.7; iso-axial velocity: Umax=2.32: (1) 0.9, (2) 0.8, (3) 0.6, (4) 0.4, (5) 0.2.

turn decreases the thermal boundary layer thickness, and therefore du. This result is illustrated
in Figure 10, where tangential velocity profiles are represented at u=p/2, z=75 and for three
different values of Pn=0, 4 and 10. The maximum of the tangential velocity 6max, increases
with Pn and the radial position of 6max indicates that du decreases with Pn. The dynamic and
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the thermal fields structures can be appreciated through Figure 11, where isotherms and axial
velocity contours are represented for three axial locations z=6.25, 50 and 125. Near the entry
section (z=6.25), the axial velocity contours are concentric circles; the forced convection is the
dominant mechanism. Further downstream, the secondary flow due to the buoyancy term
increases progressively and leads to the appearance of a low density fluid layer with a higher
temperature at the upper part of the annular duct. The cold fluid is confined in the lower part.
As m decreases with T, the axial velocity increases at the upper part of the annular duct, as
shown on Figure 11(b) and (c). Figure 12 shows clearly the acceleration of the fluid at u=p

and the deceleration at u=0. At z=125, u(u=0)=1 and u(u=p)=2.32. Therefore, the
classical assumption used by Hong and Bergles [7], which permits the consideration that the
axial velocity is undisturbed by the secondary flow for large Prandtl numbers, is not valid
when the fluid viscosity varies sufficiently with temperature. The distortion of the isotherms is
similar to that for m=constant. However, the temperature difference between the upper and
lower part of annular duct decreases with Pn since the axial velocity is higher at u=p. Figure
13 shows for the outer cylinder, the evolution of [U(u=p)−U(u=0)] along the heated zone
for different values of Pn. A similar but less pronounced result was obtained for the inner
cylinder. According to Abid et al. [15], beyond a certain axial position z %, which depends on
Gr, Pe and Re, this temperature difference becomes constant, corresponding to the establish-
ment of the thermal field.

Figure 14 shows the variation of the circumferentially averaged Nusselt number at the inner
and the outer cylinders along the heated zone for Pn=0 and 10. The broken lines correspond
to forced convection. Two zones can be distinguished in the evolution Nu (X+) for Gr"0
(curves 3–5). In the first region (here X+BXc

+:10−3), the free convection effects are
insignificant, and all the curves follow the forced convection curve. In the second region,
X+\Xc

+, the buoyancy force becomes important, the curves for mixed convection rise above
the forced convection curve. The comparison of the difference [Nu(Gr=6000, Pn=0)−
Nu(Gr=0, Pn=0)] curves 1 and 3, with [Nu(Gr=6000, Pn=10)−Nu(Gr=0, Pn=10)]

Figure 12. Evolution of the axial velocity profile along the heating zone: Re=35; Gr=6000; Pr=557.3; Pn=10;
(----) z=0; (1) z=6.25, (2) z=25, (3) z=37.5, (4) z=50, (6) z=75.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 849–864 (1999)



LAMINAR FLOW IN AN ANNULAR DUCT 863

Figure 13. Dimensionless temperature difference between the top and the bottom of the outer cylinder along the
heated region: Re=35; Gr=6000; Pr=557.3; (1) Pn=0, (2) Pn=4, (3) Pn=10.

curves 2 and 4, indicates that the increment of Nu with respect to the forced convection values
increases with Pn because the secondary flow is more important. One can note also that the
heat transfer is better on the inner than that on the outer one. Indeed, the numerical results
show that the axial velocity gradient is higher on the inner wall. Concerning the Xc

+ location,

Figure 14. Circumferentially averaged Nusselt number: Re=35; Pr=557.3; (1) outer cylinder; Gr=0, Pn=0; (2)
outer cylinder; Gr=0; Pn=10; (3) outer cylinder; Gr=6000; Pn=0; (4) outer cylinder; Gr=6000; Pn=10; (5) inner

cylinder; Gr=6000; Pn=10.
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where the Num curve for mixed convection begins to depart from its forced convection
counterpart, the calculations indicate, that Xc

+ shifts axially towards the entrance section when
Gr increases. The effect of Pn on Xc

+ is similar to that of Gr, but it is less pronounced.

5. CONCLUSION

The effect of variable viscosity on laminar mixed convection in horizontal annular duct has
been analyzed. The continuity equation and the three-dimensional parabolized form of the
momentum and energy equations are solved numerically by the finite difference technique.
Two regions have been distinguished, a first region near the entrance section where the forced
convection is dominant, and a second region further downstream, where the secondary flow
due to natural convection becomes stronger. The numerical results show that a decrease of m

with T induces: (i) intensification of the secondary flow and a reduction of the corresponding
boundary layer thickness, (ii) an acceleration of the axial flow at the upper part of the duct and
a deceleration at the lower part, by opposite to the case of constant viscosity; (iii) a reduction
of the temperature difference between the top and bottom of a cylinder; (iv) an increase of the
overall heat transfer in forced and mixed convection; (v) an axial displacement of Xc

+ towards
the inlet.
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